

Galvanized Steel StoVentec Bracket Thermal Analysis

Presented to:

David Hohenstern Senior Product Development Specialist – Ventec

Sto Corporation 120-3800 Camp Creek Parkway Atlanta, GA 30331

Report Number: 220334401 February 27, 2024

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	MODELING PROCEDURES	4
3.	THERMAL RESULTS	5
APPE	NDIX A: DETAIL DRAWINGS	
APPE	NDIX B: MODELING PARAMETERS AND ASSUMPTIONS	
APPE	NDIX C: MATERIAL PROPERTIES	
APPE	NDIX D: SIMULATED TEMPERATURE PROFILES	

APPENDIX E: GLOSSARY OF TERMS

Page

1. INTRODUCTION

Morrison Hershfield (MH) was retained by Sto Corporation (Sto) to evaluate the thermal performance of the StoVentec Galvanized Steel Bracket system for a variety of insulation thicknesses and bracket spacing. This report is a summary of the analysis.

The StoVentec Bracket system is composed of two brackets:

- FP: 5-1/4 inch (135 mm) tall, fixed-point bracket.
- GP: 3-3/4 inch (96 mm) tall, movement bracket.

Both FP and GP brackets includes a T-rail. A 1/4 inch (6 mm) thick PVC thermal isolator can be added between the brackets and the substrate.

The StoVentec brackets come in multiple sizes, which are used in combination with the exterior insulation thicknesses shown below in Table 1.1.

 Table 1.1: StoVentec Bracket Sizes and Associated Exterior Insulation Thicknesses

Bracket Size	Exterior Insulation Thickness inches (mm)
80	2 (51)
100	3 (76)
120	4 (102)
160	5 (127)
180	6 (152)
200	7 (178)
220	8 (203)

The thermal performance of the aluminum FP and GP StoVentec Bracket System were previously evaluated in 2020 and 2022. The results from the previous analysis were summarized in two reports titled "StoVentec Bracket Thermal Analysis" dated March 11, 2020 and "StoVentec Bracket Thermal Analysis" dated November 14, 2022. This analysis is based on scenarios from both previous reports with galvanized steel brackets.

Table 1.2 below summarizes the evaluated wall configurations, and Figure 1.1 illustrates representative configurations for all backup wall types. The geometry of the GP brackets as well as T-Rail were based on the drawings provided by Sto, and are provided in Appendix A.

StoVentec Bracket	Backup Wall	Bracket Size	Stud Spacing inch (mm)	Horizontal Bracket Spacing inch (mm)	Vertical Bracket Spacing inch (mm)
Galvanized Steel GP		80, 100, 120, 160 180, 200, 220	16 (406)	16 (406)	24, 30, 36, 42, 48 (610, 762, 914, 1067, 1219)
Galvanized Steel GP		80, 100, 120, 160, 180, 200, 220	24 (610)	24 (610)	24, 30, 36, 42, 48 (610, 762, 914, 1067, 1219)
Galvanized Steel GP	6 inch x 1-5/8 inch (152 mmx 41 mm) steel stud wall with Uninsulated Cavity	80, 100, 120, 160, 180, 200, 220	16 (406)	32 (813)	24, 30, 36, 42, 48 (610, 762, 914, 1067, 1219)
Galvanized Steel FP		80, 100, 120, 160, 180, 200, 220	16 (406)	16 (406)	24, 30, 36, 42, 48 (610, 762, 914, 1067, 1219)
Galvanized Steel FP		80, 100, 120, 160, 180, 200, 220	24 (610)	24 (610)	24, 30, 36, 42, 48 (610, 762, 914, 1067, 1219)
Galvanized Steel FP		80, 100, 120, 160, 180, 200, 220	16 (406)	32 (813)	24, 30, 36, 42, 48 (610, 762, 914, 1067, 1219)

Table 1.2: Evaluated StoVentec Bracket Assemblies

Figure 1.1: Schematics of Evaluated StoVentec Galvanized Steel GP Assembly

The StoVentec brackets are used in conjunction with a T-Rail profile which are adjusted such that the face of the T-Rail is against the face of the StoVentec bracket. With this configuration the rail penetrates the exterior insulation, as shown below in Figure 1.2.

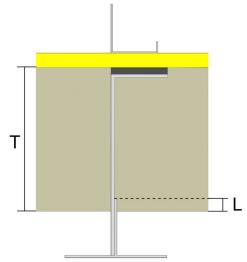


Figure 1.2: T-Rail Penetration Depths for the StoVentec Bracket System with Thermal Isolator

StoVentec Bracket Size	Insulation Thickness T inch (mm)	With Thermal Isolator L inch (mm)
80	2 (51)	5/8 (16)
100	3 (76)	13/16 (21)
120	4 (102)	1 (27)
160	5 (127)	1/2 (13)
180	6 (152)	11/16 (17)
200	7 (178)	7/8 (23)
220	8 (203)	1-1/8 (28)

Table 1.3: T-Rail Penetration Depth with Insulation Thickness and Bracket Size

2. MODELING PROCEDURES

The thermal performance of the different assembly scenarios was evaluated by 3D thermal simulations using the Nx and SimCenter 3D software package from Siemens, which is a general-purpose computer aided design (CAD) and finite element analysis (FEA) package. The thermal solver and modeling procedures utilized for this study were extensively calibrated and validated to within +/- 5% of hotbox testing for *ASHRAE Research Project 1365-RP Thermal Performance of Building Envelope Details for Mid- and High-Rise Construction and for the Building Envelope Thermal Bridging Guide*¹, which are in line with guidelines set in CSA Z5010:21. The thermal analysis utilized steady-state conditions, published thermal properties of materials and information provided by Sto. Additional assumptions for the thermal analysis are listed in Appendix B. Further assembly information, including material properties, are given in Appendix C.

The U-factor and effective R-value of the GP and FP galvanized steel bracket assemblies were calculated with the thermal break. Further information as to this calculation is provided in Appendix B.4.

The analysis presented in this report is limited to the thermal performance of the evaluated wall assemblies. Other requirements related the structural integrity, code and life safety, air, vapor, and moisture control should be verified by a design professional.

¹ https://www.bchydro.com/thermalguide

3. THERMAL RESULTS

The U-factor and effective R-values for all galvanized steel GP and FP bracket assembly configurations are listed in Tables 3.1 to Table 3.6. Example temperature profiles for each configuration are provided in Appendix D.

The thermal performance was determined using a combination of 3D thermal simulations and approximation. Select scenarios were simulated and these results were used to calculate point transmittances of the bracket assembly which were used to approximate the thermal performance of the remaining scenarios with different bracket spacing. This approximation method is commonly used to assess thermal performance of clear wall assemblies and are accepted by most North American building energy codes and standards. Since some of these values are approximate, minor differences in thermal performance between the values below and the simulated thermal performance may occur.

Table 3.1: Thermal Performance of Exterior Insulated Steel-Frame Wall Assemblieswith Studs at 16 inches (406 mm) o.c. and Galvanized Steel GP Brackets at 16 inch(406 mm) Horizontal Bracket Spacing

Vertical Bracket Spacing inch (mm)	Exterior Insulation Thickness inch (mm)	StoVenTec Bracket Size	Nominal Exterior Insulation R-value ft ² hr °F/Btu (m ² K/W)	Overall U-factor Btu/h ft ² °F (W/m ² K)	Effective R-Value ft ² hr °F/Btu (m ² K/W)
	2 (51)	80	R-8.4 (1.48 RSI)	0.097 (0.55) ¹	R-10.3 (1.81 RSI) ¹
	3 (76)	100	R-12.6 (2.22 RSI)	0.078 (0.44) ¹	R-12.9 (2.27 RSI) ¹
	4 (102)	120	R-16.8 (2.96 RSI)	0.065 (0.37) ¹	R-15.4 (2.71 RSI) ¹
24 (610) ¹	5 (127)	160	R-21.0 (3.70 RSI)	0.056 (0.32) ¹	R-18.0 (3.17 RSI) ¹
	6 (152)	180	R-25.2 (4.44 RSI)	0.050 (0.28)1	R-20.2 (3.55 RSI) ¹
	7 (178)	200	R-29.4 (5.18 RSI)	0.045 (0.26) ¹	R-22.2 (3.91 RSI) ¹
	8 (203)	220	R-33.6 (5.92 RSI)	0.041 (0.23) ¹	R-24.2 (4.26 RSI) ¹
	2 (51)	80	R-8.4 (1.48 RSI)	0.091 (0.52) ²	R-10.9 (1.93 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.071 (0.40) ²	R-14.1 (2.48 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.058 (0.33) ²	R-17.1 (3.01 RSI) ²
30 (762)	5 (127)	160	R-21.0 (3.70 RSI)	0.050 (0.28) ²	R-20.1 (3.53 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.044 (0.25) ²	R-22.6 (3.98 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.040 (0.23) ²	R-25.1 (4.42 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.036 (0.21) ²	R-27.4 (4.83 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.091 (0.51) ²	R-11.0 (1.94 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.070 (0.40) ²	R-14.3 (2.53 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.057 (0.32) ²	R-17.5 (3.08 RSI) ²
36 (914)	5 (127)	160	R-21.0 (3.70 RSI)	0.048 (0.28) ²	R-20.6 (3.63 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.043 (0.24) ²	R-23.4 (4.12 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.038 (0.22) ²	R-26.0 (4.59 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.035 (0.20) ²	R-28.6 (5.04 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ²	R-11.1 (1.95 RSI) ²
42 (1067)	3 (76)	100	R-12.6 (2.22 RSI)	0.069 (0.39) ²	R-14.5 (2.56 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.056 (0.32) ²	R-17.8 (3.14 RSI) ²

	5 (127)	160	R-21.0 (3.70 RSI)	0.047 (0.27) ²	R-21.1 (3.71 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.042 (0.24) ²	R-24.0 (4.22 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.037 (0.21) ²	R-26.8 (4.72 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.034 (0.19) ²	R-29.5 (5.20 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ²	R-11.1 (1.96 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.068 (0.39) ²	R-14.7 (2.58 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.055 (0.31) ²	R-18.0 (3.18 RSI) ²
48 (1219)	5 (127)	160	R-21.0 (3.70 RSI)	0.047 (0.27) ²	R-21.4 (3.77 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.041 (0.23) ²	R-24.4 (4.30 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.037 (0.21) ²	R-27.4 (4.82 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.033 (0.19) ²	R-30.3 (5.33 RSI) ²

²Value was approximated.

Table 3.2: Thermal Performance of Exterior Insulated Steel-Frame Wall Assemblieswith Studs at 24 inches (610 mm) o.c. and Galvanized Steel GP Brackets at 24 inch(610 mm) Horizontal Bracket Spacing

Vertical Bracket Spacing inch (mm)	Exterior Insulation Thickness inch (mm)	StoVenTec Bracket Size	Nominal Exterior Insulation R-value ft² hr °F/Btu (m²K/W)	Overall U-factor Btu/h ft ² °F (W/m ² °K)	Effective R-value ft ² hr °F/Btu (m ² °K/W)
	2 (51)	80	R-8.4 (1.48 RSI)	0.091 (0.51) ¹	R-11.0 (1.94 RSI) ¹
	3 (76)	100	R-12.6 (2.22 RSI)	0.070 (0.40) ¹	R-14.3 (2.53 RSI) ¹
	4 (102)	120	R-16.8 (2.96 RSI)	0.057 (0.32) ¹	R-17.5 (3.08 RSI) ¹
24 (610)	5 (127)	160	R-21.0 (3.70 RSI)	0.048 (0.28) ¹	R-20.6 (3.63 RSI) ¹
	6 (152)	180	R-25.2 (4.44 RSI)	0.043 (0.24)1	R-23.4 (4.12 RSI) ¹
	7 (178)	200	R-29.4 (5.18 RSI)	0.038 (0.22) ¹	R-26.0 (4.59 RSI) ¹
	8 (203)	220	R-33.6 (5.92 RSI)	0.035 (0.20)1	R-28.6 (5.04 RSI) ¹
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ²	R-11.1 (1.96 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.069 (0.39) ²	R-14.6 (2.57 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.056 (0.32) ²	R-17.9 (3.16 RSI) ²
30 (762)	5 (127)	160	R-21.0 (3.70 RSI)	0.047 (0.27) ²	R-21.2 (3.74 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.041 (0.23) ²	R-24.2 (4.26 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.037 (0.21) ²	R-27.1 (4.77 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.033 (0.19) ²	R-29.9 (5.27 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.089 (0.51) ²	R-11.2 (1.97 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.068 (0.38) ²	R-14.8 (2.60 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.055 (0.31) ²	R-18.2 (3.21 RSI) ²
36 (914)	5 (127)	160	R-21.0 (3.70 RSI)	0.046 (0.26) ²	R-21.7 (3.81 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.040 (0.23) ²	R-24.8 (4.37 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.036 (0.20) ²	R-27.9 (4.91 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.032 (0.18) ²	R-30.9 (5.43 RSI) ²
(10/7)	2 (51)	80	R-8.4 (1.48 RSI)	0.089 (0.51) ²	R-11.2 (1.98 RSI) ²
42 (1067)	3 (76)	100	R-12.6 (2.22 RSI)	0.067 (0.38) ²	R-14.9 (2.62 RSI) ²

4 (102)	120	R-16.8 (2.96 RSI)	0.054 (0.31) ²	R-18.5 (3.25 RSI) ²
5 (127)	160	R-21.0 (3.70 RSI)	0.046 (0.26) ²	R-22.0 (3.87 RSI) ²
6 (152)	180	R-25.2 (4.44 RSI)	0.040 (0.22) ²	R-25.2 (4.45 RSI) ²
7 (178)	200	R-29.4 (5.18 RSI)	0.035 (0.20) ²	R-28.4 (5.01 RSI) ²
8 (203)	220	R-33.6 (5.92 RSI)	0.032 (0.18) ²	R-31.6 (5.56 RSI) ²
2 (51)	80	R-8.4 (1.48 RSI)	0.089 (0.50) ²	R-11.3 (1.98 RSI) ²
3 (76)	100	R-12.6 (2.22 RSI)	0.067 (0.38) ²	R-15.0 (2.64 RSI) ²
4 (102)	120	R-16.8 (2.96 RSI)	0.054 (0.30) ²	R-18.6 (3.28 RSI) ²
5 (127)	160	R-21.0 (3.70 RSI)	0.045 (0.26) ²	R-22.2 (3.91 RSI) ²
6 (152)	180	R-25.2 (4.44 RSI)	0.039 (0.22) ²	R-25.6 (4.51 RSI) ²
7 (178)	200	R-29.4 (5.18 RSI)	0.035 (0.20) ²	R-28.9 (5.09 RSI) ²
8 (203)	220	R-33.6 (5.92 RSI)	0.031 (0.18) ²	R-32.1 (5.66 RSI) ²
	5 (127) 6 (152) 7 (178) 8 (203) 2 (51) 3 (76) 4 (102) 5 (127) 6 (152) 7 (178)	5 (127) 160 6 (152) 180 7 (178) 200 8 (203) 220 2 (51) 80 3 (76) 100 4 (102) 120 5 (127) 160 6 (152) 180 7 (178) 200	5 (127) 160 R-21.0 (3.70 RSI) 6 (152) 180 R-25.2 (4.44 RSI) 7 (178) 200 R-29.4 (5.18 RSI) 8 (203) 220 R-33.6 (5.92 RSI) 2 (51) 80 R-8.4 (1.48 RSI) 3 (76) 100 R-12.6 (2.22 RSI) 4 (102) 120 R-16.8 (2.96 RSI) 5 (127) 160 R-21.0 (3.70 RSI) 6 (152) 180 R-25.2 (4.44 RSI) 7 (178) 200 R-29.4 (5.18 RSI)	5 (127) 160 R-21.0 (3.70 RSI) 0.046 (0.26) ² 6 (152) 180 R-25.2 (4.44 RSI) 0.040 (0.22) ² 7 (178) 200 R-29.4 (5.18 RSI) 0.035 (0.20) ² 8 (203) 220 R-33.6 (5.92 RSI) 0.032 (0.18) ² 2 (51) 80 R-8.4 (1.48 RSI) 0.067 (0.38) ² 3 (76) 100 R-12.6 (2.22 RSI) 0.067 (0.38) ² 4 (102) 120 R-16.8 (2.96 RSI) 0.045 (0.26) ² 5 (127) 160 R-21.0 (3.70 RSI) 0.045 (0.26) ² 6 (152) 180 R-25.2 (4.44 RSI) 0.035 (0.20) ² 7 (178) 200 R-29.4 (5.18 RSI) 0.035 (0.20) ²

²Value was approximated.

Table 3.3: Thermal Performance of Exterior Insulated Steel-Frame Wall Assemblieswith Studs at 16 inches (406 mm) o.c. and Galvanized Steel GP Brackets at 32 inch(813 mm) Horizontal Bracket Spacing

Vertical Bracket Spacing inch (mm)	Exterior Insulation Thickness inch (mm)	StoVenTec Bracket Size	Nominal Exterior Insulation R-value ft² hr °F/Btu (m²K/W)	Overall U-factor Btu/h ft ² °F (W/m ² °K)	Effective R-value ft ² hr °F/Btu (m ² °K/W)
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ¹	R-11.1 (1.96 RSI) ¹
	3 (76)	100	R-12.6 (2.22 RSI)	0.068 (0.39) ¹	R-14.7 (2.58 RSI) ¹
	4 (102)	120	R-16.8 (2.96 RSI)	0.055 (0.31) ¹	R-18.0 (3.18 RSI) ¹
24 (610)	5 (127)	160	R-21.0 (3.70 RSI)	0.047 (0.27) ¹	R-21.4 (3.77 RSI) ¹
	6 (152)	180	R-25.2 (4.44 RSI)	0.041 (0.23) ¹	R-24.4 (4.30 RSI) ¹
	7 (178)	200	R-29.4 (5.18 RSI)	0.037 (0.21) ¹	R-27.4 (4.82 RSI) ¹
	8 (203)	220	R-33.6 (5.92 RSI)	0.033 (0.19) ¹	R-30.3 (5.33 RSI) ¹
	2 (51)	80	R-8.4 (1.48 RSI)	0.089 (0.51) ²	R-11.2 (1.98 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.067 (0.38) ²	R-14.9 (2.62 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.054 (0.31) ²	R-18.4 (3.24 RSI) ²
30 (762)	5 (127)	160	R-21.0 (3.70 RSI)	0.046 (0.26) ²	R-21.9 (3.85 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.040 (0.23) ²	R-25.1 (4.42 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.035 (0.20) ²	R-28.3 (4.98 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.032 (0.18) ²	R-31.3 (5.52 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.089 (0.50) ²	R-11.3 (1.98 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.067 (0.38) ²	R-15.0 (2.64 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.054 (0.30) ²	R-18.6 (3.28 RSI) ²
36 (914)	5 (127)	160	R-21.0 (3.70 RSI)	0.045 (0.26) ²	R-22.2 (3.91 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.039 (0.22) ²	R-25.6 (4.51 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.035 (0.20) ²	R-28.9 (5.09 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.031 (0.18) ²	R-32.1 (5.66 RSI) ²
42 (1067)	2 (51)	80	R-8.4 (1.48 RSI)	0.088 (0.50) ²	R-11.3 (1.99 RSI) ²

	3 (76)	100	R-12.6 (2.22 RSI)	0.066 (0.38) ²	R-15.1 (2.66 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.053 (0.30) ²	R-18.8 (3.31 RSI) ²
	5 (127)	160	R-21.0 (3.70 RSI)	0.045 (0.25) ²	R-22.5 (3.96 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.039 (0.22) ²	R-25.9 (4.57 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.034 (0.19) ²	R-29.3 (5.17 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.031 (0.17) ²	R-32.7 (5.76 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.088 (0.50) ²	R-11.3 (2.00 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.066 (0.37) ²	R-15.2 (2.67 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.053 (0.30) ²	R-18.9 (3.33 RSI) ²
48 (1219)	5 (127)	160	R-21.0 (3.70 RSI)	0.044 (0.25) ²	R-22.7 (3.99 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.038 (0.22) ²	R-26.2 (4.62 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.034 (0.19) ²	R-29.7 (5.23 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.030 (0.17) ²	R-33.1 (5.84 RSI) ²

²Value was approximated.

Table 3.4: Thermal Performance of Exterior Insulated Steel-Frame Wall Assemblieswith Studs at 16 inch (406 mm) o.c. and Galvanized Steel FP Brackets at 16 inch (406 mm) Horizontal Bracket Spacing

Vertical Bracket Spacing inch (mm)	Exterior Insulation Thickness inch (mm)	StoVenTec Bracket Size	Nominal Exterior Insulation R-value ft ² hr °F/Btu (m ² K/W)	Overall U-factor Btu/h ft ² °F (W/m ² K)	Effective R-Value ft ² hr °F/Btu (m ² K/W)
	2 (51)	80	R-8.4 (1.48 RSI)	0.103 (0.58)1	R-9.8 (1.72 RSI) ¹
	3 (76)	100	R-12.6 (2.22 RSI)	0.082 (0.46)1	R-12.3 (2.16 RSI) ¹
	4 (102)	120	R-16.8 (2.96 RSI)	0.069 (0.39)1	R-14.5 (2.55 RSI) ¹
24 (610)	5 (127)	160	R-21.0 (3.70 RSI)	0.060 (0.34)1	R-16.7 (2.94 RSI) ¹
	6 (152)	180	R-25.2 (4.44 RSI)	0.054 (0.31)1	R-18.5 (3.26 RSI) ¹
	7 (178)	200	R-29.4 (5.18 RSI)	0.049 (0.28)1	R-20.3 (3.57 RSI) ¹
	8 (203)	220	R-33.6 (5.92 RSI)	0.046 (0.26)1	R-21.9 (3.85 RSI) ¹
	2 (51)	80	R-8.4 (1.48 RSI)	0.093 (0.53) ²	R-10.7 (1.88 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.073 (0.41) ²	R-13.7 (2.42 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.061 (0.34) ²	R-16.5 (2.90 RSI) ²
30 (762)	5 (127)	160	R-21.0 (3.70 RSI)	0.052 (0.30) ²	R-19.1 (3.37 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.047 (0.27) ²	R-21.4 (3.77 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.043 (0.24) ²	R-23.5 (4.14 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.039 (0.22) ²	R-25.6 (4.50 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.092 (0.52) ²	R-10.8 (1.91 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.071 (0.40) ²	R-14.0 (2.47 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.059 (0.33) ²	R-17.0 (2.99 RSI) ²
36 (914)	5 (127)	160	R-21.0 (3.70 RSI)	0.051 (0.29) ²	R-19.8 (3.49 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.045 (0.26) ²	R-22.3 (3.92 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.041 (0.23) ²	R-24.6 (4.34 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.037 (0.21) ²	R-26.9 (4.73 RSI) ²

	2 (51)	80	R-8.4 (1.48 RSI)	0.092 (0.52) ²	R-10.9 (1.92 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.070 (0.40) ²	R-14.2 (2.51 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.058 (0.33) ²	R-17.3 (3.05 RSI) ²
42 (1067)	5 (127)	160	R-21.0 (3.70 RSI)	0.049 (0.28) ²	R-20.3 (3.57 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.044 (0.25) ²	R-22.9 (4.04 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.039 (0.22) ²	R-25.5 (4.49 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.036 (0.20) ²	R-27.9 (4.92 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.091 (0.52) ²	R-11.0 (1.94 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.069 (0.39) ²	R-14.4 (2.54 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.057 (0.32) ²	R-17.6 (3.10 RSI) ²
48 (1219)	5 (127)	160	R-21.0 (3.70 RSI)	0.048 (0.27) ²	R-20.7 (3.64 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.043 (0.24) ²	R-23.5 (4.14 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.038 (0.22) ²	R-26.2 (4.61 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.035 (0.20) ²	R-28.8 (5.06 RSI) ²

²Value was approximated.

Table 3.5: Thermal Performance of Exterior Insulated Steel-Frame Wall Assemblieswith Studs at 24 inch (610 mm) o.c. and Galvanized Steel FP Brackets at 24 inch (610mm) Horizontal Bracket Spacing

Vertical Bracket Spacing inch (mm)	Exterior Insulation Thickness inch (mm)	StoVenTec Bracket Size	Nominal Exterior Insulation R-value ft² hr °F/Btu (m²K/W)	Overall U-factor Btu/h ft ² °F (W/m ² °K)	Effective R-value ft² hr °F/Btu (m² °K/W)
	2 (51)	80	R-8.4 (1.48 RSI)	0.092 (0.521	R-10.8 (1.91 RSI) ¹
	3 (76)	100	R-12.6 (2.22 RSI)	0.071 (0.40) ¹	R-14.0 (2.47 RSI) ¹
	4 (102)	120	R-16.8 (2.96 RSI)	0.059 (0.33) ¹	R-17.0 (2.99 RSI) ¹
24 (610)	5 (127)	160	R-21.0 (3.70 RSI)	0.051 (0.29) ¹	R-19.8 (3.49 RSI) ¹
	6 (152)	180	R-25.2 (4.44 RSI)	0.045 (0.26) ¹	R-22.3 (3.92 RSI) ¹
	7 (178)	200	R-29.4 (5.18 RSI)	0.041 (0.23) ¹	R-24.6 (4.34 RSI) ¹
	8 (203)	220	R-33.6 (5.92 RSI)	0.037 (0.21) ¹	R-26.9 (4.73 RSI) ¹
	2 (51)	80	R-8.4 (1.48 RSI)	0.091 (0.52) ²	R-11.0 (1.93 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.070 (0.40) ²	R-14.3 (2.52 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.057 (0.33) ²	R-17.5 (3.08 RSI) ²
30 (762)	5 (127)	160	R-21.0 (3.70 RSI)	0.049 (0.28) ²	R-20.5 (3.61 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.043 (0.24) ²	R-23.2 (4.09 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.039 (0.22) ²	R-25.8 (4.55 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.035 (0.20) ²	R-28.4 (4.99 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.091 (0.51) ²	R-11.0 (1.95 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.069 (0.39) ²	R-14.5 (2.56 RSI) ²
27 (014)	4 (102)	120	R-16.8 (2.96 RSI)	0.056 (0.32) ²	R-17.8 (3.14 RSI) ²
36 (914)	5 (127)	160	R-21.0 (3.70 RSI)	0.048 (0.27) ²	R-21.0 (3.70 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.042 (0.24) ²	R-23.9 (4.21 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.037 (0.21) ²	R-26.7 (4.71 RSI) ²

		1			
	8 (203)	220	R-33.6 (5.92 RSI)	0.034 (0.19)²	R-29.4 (5.19 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ²	R-11.1 (1.96 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.068 (0.39) ²	R-14.7 (2.59 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.055 (0.31) ²	R-18.1 (3.19 RSI) ²
42 (1067)	5 (127)	160	R-21.0 (3.70 RSI)	0.047 (0.27) ²	R-21.4 (3.77 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.041 (0.23) ²	R-24.5 (4.31 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.036 (0.21) ²	R-27.4 (4.83 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.033 (0.19) ²	R-30.3 (5.33 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ²	R-11.2 (1.97 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.068 (0.38) ²	R-14.8 (2.61 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.055 (0.31) ²	R-18.3 (3.22 RSI) ²
48 (1219)	5 (127)	160	R-21.0 (3.70 RSI)	0.046 (0.26) ²	R-21.7 (3.82 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.040 (0.23) ²	R-24.9 (4.38 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.036 (0.20) ²	R-28.0 (4.92 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.032 (0.18) ²	R-31.0 (5.45 RSI) ²

²Value was approximated.

Table 3.6: Thermal Performance of Exterior Insulated Steel-Frame Wall Assemblieswith Studs at 16 inch (406 mm) o.c. and Galvanized Steel FP Brackets at 32 inch (813mm) Horizontal Bracket Spacing

Vertical Bracket Spacing inch (mm)	Exterior Insulation Thickness inch (mm)	StoVenTec Bracket Size	Nominal Exterior Insulation R-value ft² hr °F/Btu (m²K/W)	Overall U-factor Btu/h ft² °F (W/m² °K)	Effective R-value ft ² hr °F/Btu (m ² °K/W)
	2 (51)	80	R-8.4 (1.48 RSI)	0.091 (0.52) ¹	R-11.0 (1.94 RSI) ¹
	3 (76)	100	R-12.6 (2.22 RSI)	0.069 (0.39) ¹	R-14.4 (2.54 RSI) ¹
	4 (102)	120	R-16.8 (2.96 RSI)	0.057 (0.32)1	R-17.6 (3.10 RSI) ¹
24 (610)	5 (127)	160	R-21.0 (3.70 RSI)	0.048 (0.27) ¹	R-20.7 (3.64 RSI) ¹
	6 (152)	180	R-25.2 (4.44 RSI)	0.043 (0.24)1	R-23.5 (4.14 RSI) ¹
	7 (178)	200	R-29.4 (5.18 RSI)	0.038 (0.22) ¹	R-26.2 (4.61 RSI) ¹
	8 (203)	220	R-33.6 (5.92 RSI)	0.035 (0.20) ¹	R-28.8 (5.06 RSI) ¹
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ²	R-11.1 (1.95 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.068 (0.39) ²	R-14.6 (2.58 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.056 (0.32) ²	R-18.0 (3.17 RSI) ²
30 (762)	5 (127)	160	R-21.0 (3.70 RSI)	0.047 (0.27) ²	R-21.3 (3.75 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.041 (0.23) ²	R-24.3 (4.28 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.037 (0.21) ²	R-27.2 (4.79 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.033 (0.19) ²	R-30.0 (5.29 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.090 (0.51) ²	R-11.2 (1.97 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.068 (0.38) ²	R-14.8 (2.61 RSI) ²
36 (914)	4 (102)	120	R-16.8 (2.96 RSI)	0.055 (0.31) ²	R-18.3 (3.22 RSI) ²
	5 (127)	160	R-21.0 (3.70 RSI)	0.046 (0.26) ²	R-21.7 (3.82 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.040 (0.23) ²	R-24.9 (4.38 RSI) ²

	7 (178)	200	R-29.4 (5.18 RSI)	0.036 (0.20) ²	R-28.0 (4.92 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.032 (0.18) ²	R-31.0 (5.45 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.089 (0.51) ²	R-11.2 (1.97 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.067 (0.38) ²	R-14.9 (2.63 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.054 (0.31) ²	R-18.5 (3.26 RSI) ²
42 (1067)	5 (127)	160	R-21.0 (3.70 RSI)	0.045 (0.26) ²	R-22.0 (3.88 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.040 (0.22) ²	R-25.3 (4.46 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.035 (0.20) ²	R-28.5 (5.02 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.032 (0.18) ²	R-31.7 (5.58 RSI) ²
	2 (51)	80	R-8.4 (1.48 RSI)	0.089 (0.50) ²	R-11.2 (1.98 RSI) ²
	3 (76)	100	R-12.6 (2.22 RSI)	0.067 (0.38) ²	R-15.0 (2.65 RSI) ²
	4 (102)	120	R-16.8 (2.96 RSI)	0.054 (0.30) ²	R-18.7 (3.29 RSI) ²
48 (1219)	5 (127)	160	R-21.0 (3.70 RSI)	0.045 (0.26) ²	R-22.3 (3.92 RSI) ²
	6 (152)	180	R-25.2 (4.44 RSI)	0.039 (0.22) ²	R-25.6 (4.52 RSI) ²
	7 (178)	200	R-29.4 (5.18 RSI)	0.035 (0.20) ²	R-29.0 (5.10 RSI) ²
	8 (203)	220	R-33.6 (5.92 RSI)	0.031 (0.18) ²	R-32.2 (5.67 RSI) ²

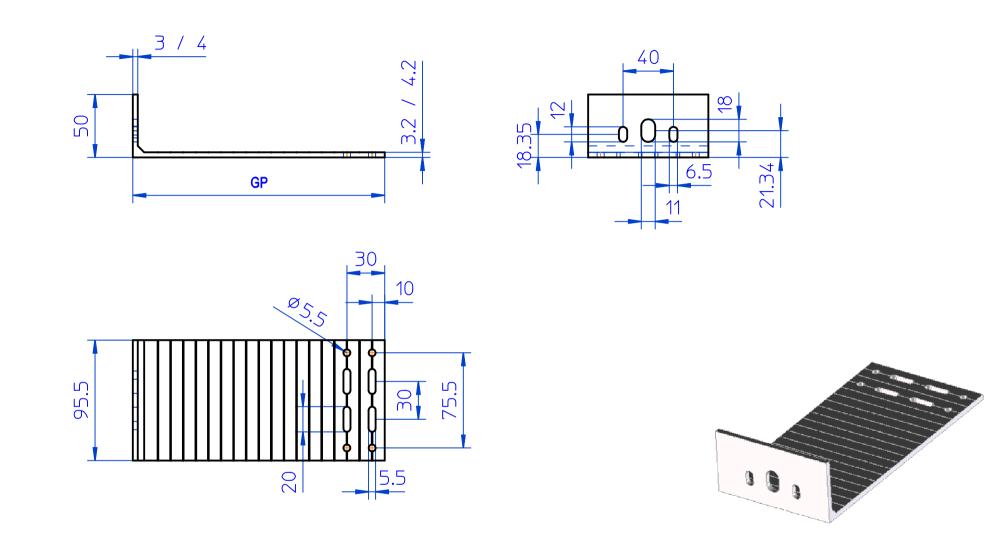
²Value was approximated.

We believe that this report meets your objectives for evaluating the thermal performance for the galvanized steel StoVentec bracket system assemblies. If you have any questions or comments related to the above, please do not hesitate to contact the undersigned.

Morrison Hershfield Limited

OFESSION <u>U</u> S. RAHMATIPOUR 100222223 WCE OF ONTP 02/27/2024 2:55:29 PM

Shahima Rahmatipour, P.Eng., PMP, CEM, M.Sc., *Building Science Engineer*


Ivan Lee, P.Eng., M.A.Sc. *Principal, Building Science Engineer*

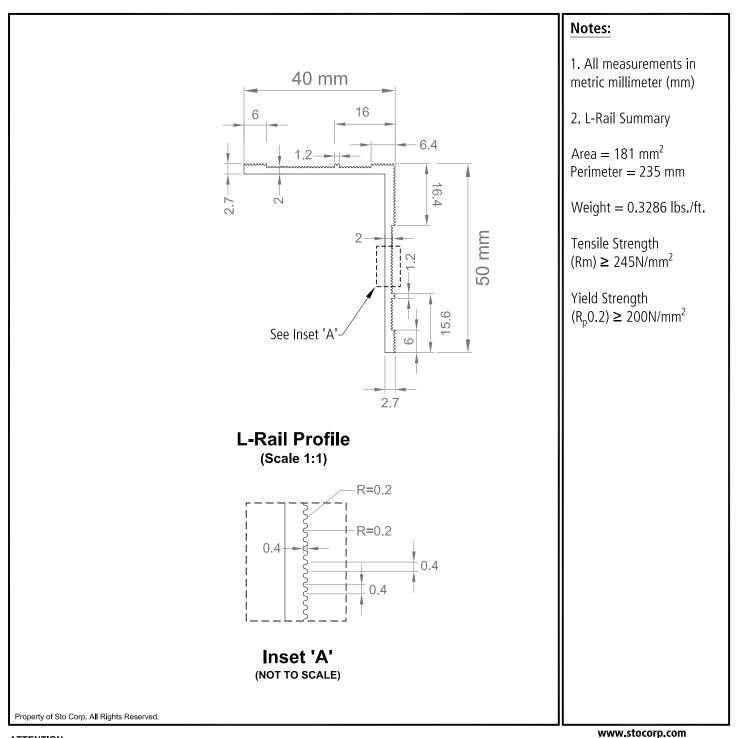
APPENDIX A: DETAIL DRAWINGS

	20	3/4	FP		3.2 / 4.2							
	135		20	5.5	30 10 • • • • • • • • • • • • • • • • • • •	25	C.0/	11				
<u>t=3,0 / 3,2 mm</u>	<u>Gewicht in g</u>	<u>t=4,0 / 4,2 mm</u>	<u>Gewicht in g</u>	Verw	endungsbereich			(zul.Abweichung	(Oberfläche	e) Maßstab 1:3	(Gewicht)	
FP 40	94	FP 200	363					-		Werkstoff	I	
FP 60	113	FP 220	374							EN AW-6063 T	66	
FP 80	132	FP 240	401					Datum Bearb. T.Käfer	Name 20.02.18	(Bezeichnung)		
FP 100	155	FP 260	437					gepr. T.Grünewal		– Festpunkt		
FP 120	180	FP 280	465					Norm				
FP 140	203	FP 300	494							(Zeichnungsnummer)		Blatt
FP 160	230	FP 320	522									1
FP 180	255			Zust	Gewicht hinzu Änderung	11.09.18 Datum	T.K. Name	(Ursprung)		(erstellt von) (erstellt durch)	v. 2

<u>t=3,0 / 3,2 mm</u>	<u>Gewicht in g</u>	<u>t=4,0 / 4,2 mm</u>	<u>Gewicht in g</u>	Verwe	endungsbereich			(zul.Ab	weichung)	(Oberfläche)	Maßstab 1:3	(Gewicht)	
GP 40	68	GP 200	260								Werkstoff	T / /	
GP 60	81	GP 220	268						r		EN AW-6063	166	
CD 00	04	CD 340	207						Datum	Name	(Bezeichnung)		
GP 80	94	GP 240	287					Bearb.	T.Käfer	20.02.18			
GP 100	110	GP 260	307					gepr.	T.Grünewald	22.02.18	Gleitpunkt		
GP 120	127	GP 280	327	\vdash				Norm			·		
GP 140	144	GP 300	372								(Zeichnungsnummer)		Blatt
GP 160	162	GP 320	383		Caviable biance	44.00.49	Т.К.						2
GP 180	179			Zust	Gewichte hinzu Änderung	11.09.18 Datum		(Urspru	ung)		(erstellt von)	(erstellt durch)	v. 2

StoThermostop Alu FP E28 (M ca. 1:1) Rev. 00 11.02.19 Sto-Thermostop Alu FP 50 12.35 12 17.5 25 6.5 25 18 135 25 <u>6.5</u> 25 17.5 18.35 21.34 Material : ശ **PVC Hartschaum** 50

sto

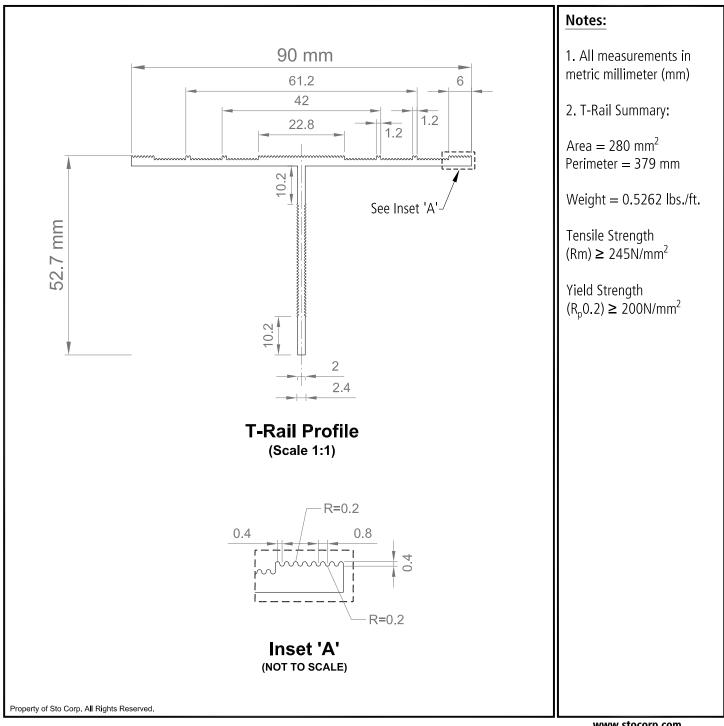

StoThermostop Alu GP E29 (M ca. 1:1) Rev. 00 11.02.19 Sto-Thermostop Alu GP 50 12.35 12 27.75 6.5 18 20 95.5 20 <u>6.5</u> 27.75 18.35 21.34 Material : ဖ PVC Hartschaum 50

sto

StoVentec[®]Sub-Construction L-Rail (40mm x 50mm)

Detail No.: 90.001.SUB Date: September 2019

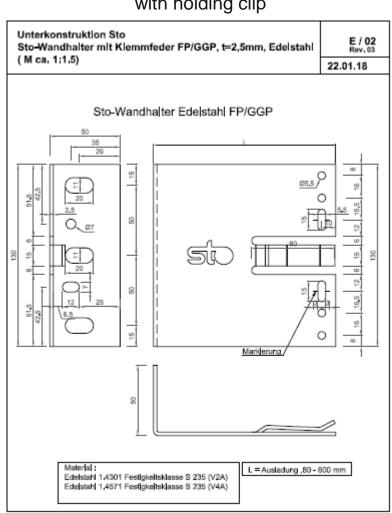
ATTENTION


Sto products are intended for use by qualified professional contractors, not consumers, as a component of a larger construction assembly as specified by a qualified design professional, general contractor or builder. They should be installed in accordance with those specifications and Sto's instructions. Sto Corp. disclaims all, and assumes no, liability for on-site inspections, for its products applied improperly, or by unqualified persons or entities, or as part of an improperly designed or constructed building, for the nonperformance of adjacent building components or assemblies, of for other construction activities beyond Sto's control. Improper use of Sto products or use as part of an improperly designed or constructed larger assembly or building may result in serious damage to Sto products, and to the structure of the building or its components.

STO CORP. DISCLAIMS ALL WARRANTIES EXPRESSED OR IMPLIED EXCEPT FOR EXPLICIT LIMITED WRITTEN WARRANTIES ISSUED TO AND ACCEPTED BY BUILDING OWNERS IN ACCORDANCE WITH STO'S WARRANTY PROGRAMS WHICH ARE SUBJECT TO CHANGE FROM TIME TO TIME. For the fullest, most current information on proper application, clean-up, mixing and other specifications and warranties, cautions and disclaimers, please refer to the Sto Corp.website, www.stocorp.com.

StoVentec[®] Sub-Construction T-Rail (90mm x 52.7mm)

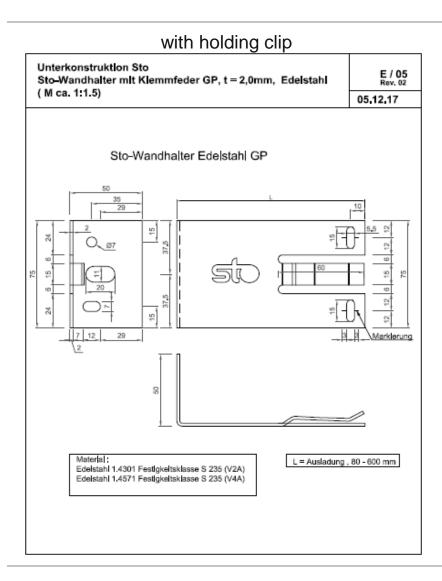
Detail No.: 90.001.SUB Date: September 2019


ATTENTION

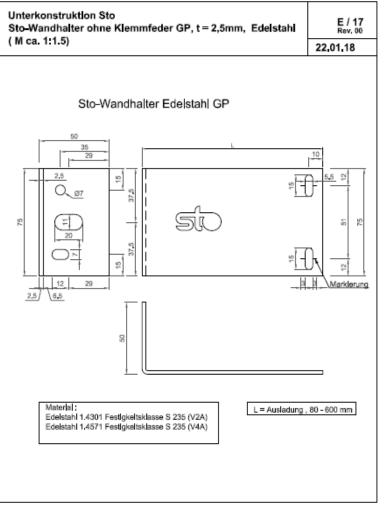
www.stocorp.com

Sto products are intended for use by qualified professional contractors, not consumers, as a component of a larger construction assembly as specified by a qualified design professional, general contractor or builder. They should be installed in accordance with those specifications and Sto's instructions. Sto Corp. disclaims all, and assumes no, liability for on-site inspections, for its products applied improperly, or by unqualified persons or entities, or as part of an improperly designed or constructed building, for the nonperformance of adjacent building components or assemblies, of for other construction activities beyond Sto's control. Improper use of Sto products or use as part of an improperly designed or constructed larger assembly or building may result in serious damage to Sto products, and to the structure of the building or its components.


STO CORP. DISCLAIMS ALL WARRANTIES EXPRESSED OR IMPLIED EXCEPT FOR EXPLICIT LIMITED WRITTEN WARRANTIES ISSUED TO AND ACCEPTED BY BUILDING OWNERS IN ACCORDANCE WITH STO'S WARRANTY PROGRAMS WHICH ARE SUBJECT TO CHANGE FROM TIME TO TIME. For the fullest, most current information on proper application, clean-up, mixing and other specifications and warranties, cautions and disclaimers, please refer to the Sto Corp.website, www.stocorp.com.



with holding clip


without holding clip

without holding clip

sto 📃

Technical Data Sheet StoVentro Bracket L200 FP

Sub-construction element for StoVentec facades

Area of application	 for forming fixed and sliding points to all system and the impact from wind loads 	osorb the dead weight of the facade
Properties	 2 rows of holes, each with 2 oblong hole for fixing the Sto-Aluminium T- and L-pr with marking grooves for quick alignment dimensioning the wall bracket made of aluminium: quality EN AW-606 755-9 	ofiles nt of the carrier profiles and for
Format	 anchor hole: 3 oblong holes: 11 mm x 1 height: 135 mm material thickness at a projection of 40 material thickness at a projection of 200 length of wall bracket back: 50 mm 	- 180 mm: 3.0 / 3.2 mm
Information/notes	 order the optional thermal separating el delivery time: 5 days + despatch 	ement separately
Substrate		
Requirements	The substrate must be firm, dry, clean, an	nd load-bearing.
Preparations	Check existing substrates for their load-b Facade measurement (horizontal/vertical the anchorage substrate and any resultin brackets. In the case of existing buildings (provided dowel extracts are required.) relating to any possible unevenness in g differing projections of the wall
Application Consumption	Type of application	Approx. consumption
	in accordance with structural analysis	
	Material consumption depends on the ap among other factors. The stated consum guide. If required, determine precise cons	otion values are only to be used as a

, _

Technical Data Sheet StoVentro Bracket L200 FP

	specific project.						
Application	if necessary, anchor in the substrate with a thermal separating element						
	Measure (horizontally/vertically) and install (by drilling/screwing) the aluminium wall brackets with structurally defined fixing elements (screws, dowels, anchors, etc.).						
Notes, recommendations, special information, niscellaneous	Drill holes must be blown out. When using galvanised anchor screws, the screw heads must be provided with a corrosion resistant protection layer. Sliding points must be fixed in the middle of ar oblong hole (screw / rivet). Fixed points must be fixed in a round hole (screw / rivet). Please note the specifications of the structural analysis (if generated) of the installation plan for the (horizontal /vertical) axis spacings.						
	We recommend always fitting a separating element with aluminium wall brackets due to their thermal conductivity.						
Delivery							
Packaging	box						
Storage							
Storage conditions	Do not subject the article to loads or stress.						
Identification							
Product group	RSC system accessories						
Safety	The product is a manufactured item. The creation of a safety data sheet in accordance with the REACH Regulation (EU) No. 1907/2006, Annex II, is not required. Detailed information can be found at www.sto.de under the category Fachhandwerker (tradesmen) / REACH.						
Special notes	The information in this Technical Data Sheet serves to ensure the product's intended use, or its suitability for use, and is based on our findings and experience. Users are nevertheless responsible for establishing the product's suitability and use. Applications not specifically mentioned in this Technical Data Sheet are permissible only after prior consultation.						

prior consultation. Where no approval is given, such applications are at the user's own risk. This applies in particular when the product is used in combination with other products.

Rev. no.: 1 / EN /Sto SE & Co. KGaA./. 13.03.2019 / PROD4135 / StoVentro Bracket L200 FP

Technical Data Sheet StoVentro Bracket L200 FP

When a new Technical Data Sheet is published, all previous Technical Data Sheets are no longer valid. The latest version is available on the Internet.

Sto SE & Co. KGaA Ehrenbachstr. 1 79780 Stühlingen / Germany Phone: +49 7744 57-0 Fax: +49 7744 57-2178 Infoservice.export@sto.com www.sto.com

Rev. no.: 1 / EN /Sto SE & Co. KGaA./. 13.03.2019 / PROD4135 / StoVentro Bracket L200 FP

sto 📃

Technical Data Sheet StoVentro Bracket L200 GP

Sub-construction element for StoVentec facades

Characteristics						
Area of application	 for forming sliding points to absorb the effect of wind loads on the facade syste 					
Properties	 2 rows of holes, each with 2 oblong holes and 2 round holes 					
	 for fixing the Sto-Aluminium T- and L-profiles 					
	 with marking grooves for quick alignment of the carrier profiles and for 					
	dimensioning the wall bracket					
	 made of aluminium: quality EN AW-6063 T66, tolerance in accordance with EN 					
	755-9					
Format	• anchor hole: 1 oblong hole: 11 mm x 18 mm, 2 oblong holes: 6.5 mm x 12 mm					
	Height: 95.5 mm					
	 material thickness at a projection of 40 - 180 mm: 3.0 / 3.2 mm 					
	 material thickness at a projection of 200 - 320 mm: 4.0 / 4.2 mm 					
	 length of wall bracket back: 50 mm 					
Information/notes	 order the optional thermal separating element separately 					
	 delivery time: 5 days + despatch 					
Substrate						
Requirements	The substrate must be firm, dry, clean, and load-bearing.					
Preparations	Check existing substrates for their load-bearing capacity.					
	Facade measurement (horizontal/vertical) relating to any possible unevenness ir					
	the anchorage substrate and any resulting differing projections of the wall					
	brackets.					
	In the case of existing buildings (provided they are not of reinforced concrete), dowel extracts are required.					
	dower extracts are required.					
Application						
Consumption	Type of application Approx. consumption					
	in accordance with structural analysis					
	Material consumption depends on the application, substrate, and consistency, among other factors. The stated consumption values are only to be used as a guide. If required, determine precise consumption values on the basis of the specific project.					

Ļ

Technical Data Sheet StoVentro Bracket L200 GP

Application	if necessary, anchor in the substrate with a thermal separating element
	Measure (horizontally/vertically) and install (by drilling/screwing) the aluminium wall brackets with structurally defined fixing elements (screws, dowels, anchors, etc.).
Notes, recommendations, special information, miscellaneous	 Drill holes must be blown out. When using galvanised anchor screws, the screw heads must be provided with a corrosion resistant protection layer. Sliding points must be fixed in the middle of an oblong hole (screw / rivet). Fixed points must be fixed in a round hole (screw / rivet). Please note the specifications of the structural analysis (if generated) of the installation plan for the (horizontal /vertical) axis spacings. We recommend always fitting a separating element with aluminium wall brackets due to their thermal conductivity.

Delivery	
Packaging	box
Storage	
Storage conditions	Do not subject the article to loads or stress.

Product group	RSC system accessories
Safety	The product is a manufactured item. The creation of a safety data sheet in accordance with the REACH Regulation (EU) No. 1907/2006, Annex II, is not required.
	Detailed information can be found at www.sto.de under the category Fachhandwerker (tradesmen) / REACH.

Special notes

The information in this Technical Data Sheet serves to ensure the product's intended use, or its suitability for use, and is based on our findings and experience. Users are nevertheless responsible for establishing the product's suitability and use. Applications not specifically mentioned in this Technical Data Sheet are permissible only after prior consultation. Where no approval is given, such applications are at the user's own risk. This applies in particular when the product is used in combination with other products.

Rev. no.: 1 / EN /Sto SE & Co. KGaA./. 13.03.2019 / PROD4136 / StoVentro Bracket L200 GP

Technical Data Sheet StoVentro Bracket L200 GP

When a new Technical Data Sheet is published, all previous Technical Data Sheets are no longer valid. The latest version is available on the Internet.

Sto SE & Co. KGaA Ehrenbachstr. 1 79780 Stühlingen / Germany Phone: +49 7744 57-0 Fax: +49 7744 57-2178 Infoservice.export@sto.com www.sto.com

Rev. no.: 1 / EN /Sto SE & Co. KGaA./. 13.03.2019 / PROD4136 / StoVentro Bracket L200 GP

Technical Data Sheet StoVentro Thermostop L200

Thermal separating element between wall bracket and wall substrate

sto

Area of application	 to reduce thermal bridging between the wall bracket and wall substrate
Properties	made of rigid PVC
	with punched holes
	 thermal conductivity: 0.08 - 0.09 W/(m*K)
Format	• thickness: 6 mm
	 height: 135 mm (fixed point) or 95.5 mm (sliding point)
	• width: 50 mm
Information/notes	installation in accordance with structural analysis with approved anchoring
	elements
Substrate	
Requirements	The substrate must be firm, dry, clean, and load-bearing.
Preparations	Blow out the drill hole.
Application	
Application	Insert the thermal separating element between the wall substrate and the base
	plate of the wall bracket. Fix the wall bracket and the separating element with anchors.
Delivery	
Delivery Colour shade	white
	white
Storage	
Storage conditions	Do not subject the article to loads or stress.

Rev. no.: 1 / EN /Sto SE & Co. KGaA./. 12.04.2019 / PROD4130 / StoVentro Thermostop L200

sto 📃

Technical Data Sheet StoVentro Thermostop L200

Identification

Product group

RSC system accessories

Special notes

The information in this Technical Data Sheet serves to ensure the product's intended use, or its suitability for use, and is based on our findings and experience. Users are nevertheless responsible for establishing the product's suitability and use. Applications not specifically mentioned in this Technical Data Sheet are permissible only after prior consultation. Where no approval is given, such applications are at the user's own risk. This applies in particular when the product is used in combination with other products.

When a new Technical Data Sheet is published, all previous Technical Data Sheets are no longer valid. The latest version is available on the Internet.

Sto SE & Co. KGaA Ehrenbachstr. 1 79780 Stühlingen / Germany Phone: +49 7744 57-0 Fax: +49 7744 57-2178 Infoservice.export@sto.com www.sto.com

Rev. no.: 1 / EN /Sto SE & Co. KGaA./. 12.04.2019 / PROD4130 / StoVentro Thermostop L200

Nedal Aluminium BV

Groenewoudsedijk 1 3528 BG Utrecht P.O. Box 2020 3500 GA Utrecht The Netherlands +31 (0)30 292 57 11 info@nedal.com www.nedal.com

ALLOY DATA SHEET EN-AW 6063[AlMg0.7Si] (Type: General extrusion alloy)

The alloy EN AW-6063 is a widely used extrusion alloy, suitable for applications where only modest strength properties are required. Parts can be produced with a good surface quality, suitable for many coating operations. Typical application fields are furniture, finishing materials, windows and doors, carbody finishing, façade construction, lighting columns and flagpoles.

Chemical composition according to EN573-3 (weight%, remainder Al)

ententiour										
Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	remarks	oth	ers
									each	total
0.20-	max.	max.	max.	0.45-	max.	max.	max.		max.	max.
0.6	0.35	0.10	0.10	0.9	0.10	0.10	0.10		0.05	0.15

Mechanical properties according to EN755-2

	operates accord					
Temper*	Wallthickness e*** [mm]	Yield stress Rp _{0.2} [MPa]	Tensile strength Rm [MPa]	A [%]	A ₅₀ [%]	Hardness** HB
T4	≤ 25	65	130	14	12	50
Т5	≤ 10	130	175	8	6	65
IJ	10 < e ≤ 25	110	160	7	5	65
тс	≤ 10	170	215	8	6	75
Т6	10 < e ≤ 25	160	195	8	6	75
T66	≤ 10	200	245	8	6	80
	10 < e ≤ 25	180	225	8	6	80

*Temper designation according to EN515: T4-Naturally aged to a stable condition, T5-cooled from an elevated temperature forming operation and artificially aged, T6-Solution heat treated, quenched and artificially aged, T66-cooled from an elevated temperature forming operation and artificially aged to a condition with higher mechanical properties through special control of manufacturing processes. (T6/T66 properties can be achieved by press quenching)

** Hardness values are for indication only

***For different wall thicknesses within one profile, the lowest specified properties shall be considered as valid for the whole profile cross section

Physical properties (approximate values, 20°C)

inybical properti	rysical properties (approximate values, zo e)						
Density	Melting range	Electrical	Thermal	Co-efficient of	Modulus of		
		Conductivity	Conductivity	thermal	Elasticity		
[kg/m ³]	[°C]	[MS/m]	[W/m.K]	Expansion	[GPa]		
				10 ⁻⁶ /K			
2700	585-650	28-34	200-220	23.4	~70		

Weldability¹

Gas: 3 TIG: 2 MIG: 2

Typical filler materials (EN ISO18273): SG-AIMg5Cr(A) or AlSi5, and AIMg3 when the product has to be anodised. Due to the heat input during welding the mechanical properties will be reduced by approximately 50% (ref. EN1999-1).

Machining characteristics¹

T4 temper: 3 T5 and T6 temper: 2

Coating properties¹ Hard protecting anodising: 1

Decorative/bright/colour anodising: 2

Corrosion resistance¹

General: 1 Marine: 2

¹Relative qualification ranging from 1-very good to 6 unsuitable

November 2017 Rev. 02

APPENDIX B: MODELING PARAMETERS AND ASSUMPTIONS

1. GENERAL MODELING APPROACH

For this report, a steady-state conduction model was used. The following parameters were also assumed:

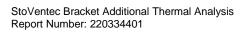
- Material properties were taken from information provided by Sto Corporation and the ASHRAE Handbook Fundamentals for common materials.
- Enclosed air spaces, less than 1/2 inch (13 mm) in depth, were modeled with an equivalent thermal conductivity of the air that includes the impacts of convection and radiation within the enclosure. Calculations for this equivalent conductivity were based on ISO 10077-2.
- Enclosed air spaces, greater than 1/2 inch (13 mm) in depth, were modeled with an
 equivalent thermal conductivity of the air that includes the impacts of convection and
 radiation within the enclosure. Calculations for this equivalent conductivity were based
 on Table 6 of CSZ Z5010:2021 and Table 3 in Chapter 26 of 2017 ASHRAE Handbook
 Fundamentals.
- Interior/exterior air films were taken from Table 8 of CSA Z5010: 2021 and Table 1, p. 26.1 of 2009 ASHRAE Handbook Fundamentals depending on surface orientation. The exterior air films were based on an exterior wind speed of 15 mph.
- In ASHRAE 1365-RP, for rain screen cavity systems, most lightweight claddings have an insignificant impact on the thermal performance other than shielding the insulation from direct wind exposure. The cladding and secondary structure outboard of the clip system were not explicitly modeled but were incorporated into the exterior film coefficient.
- From the calibration in 1365-RP, contact resistances between materials were modeled and varied between R-0.01 and R-0.2 depending on the materials and interfaces.
- Insulation and other components were considered tight to adjacent interfaces.
- The clear field transmittances included in this analysis include uniform thermal bridges such as studs, brackets, and rails.

2. TEMPERATURE INDEX

The temperature index is the ratio of the surface temperature relative to the interior and exterior temperatures. The temperature index has a value between 0 and 1, where 0 is the exterior temperature and 1 is the interior temperature. If T_i is known, Equation 1 can be rearranged for $T_{surface}$. This arrangement allows the modelled surface temperatures to be applicable to any climate.

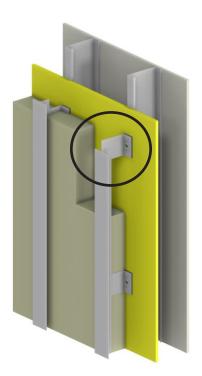
$$T_i = \frac{T_{surface} - T_{outside}}{T_{inside} - T_{outside}}$$
 EQ 1

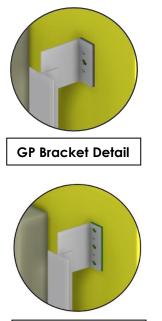
Note, these indices shown in the temperature profiles for this analysis are for general information only and are not intended to predict in-service surface temperatures subject to transient conditions, variable heating systems, and/ or interior obstructions that restrict heating of the assembly. For full limitations of this modeling approach, see ASHRAE 1365-RP.

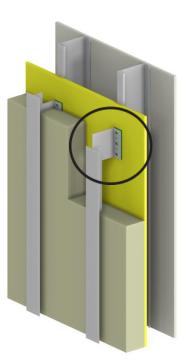

3. BOUNDARY CONDITIONS

Boundary Location	Combined Convective and Radiation Heat Transfer Coefficient BTU/hft ² °F (W/m ² K)				
Exterior Wall Surfaces with Generic Cladding	1.5 (8.3)				
Interior Walls	1.5 (8.3)				

Table B3.1: Boundary Conditions


	L
	1


APPENDIX C: MATERIAL PROPERTIES



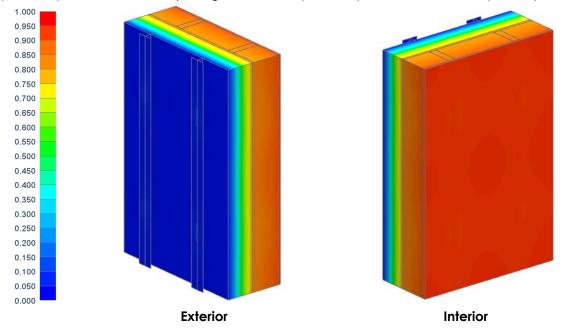
1. EXTERIOR INSULATED STEEL STUD ASSEMBLY

FP Bracket Detail

Component	Material	Thickness in (mm)	Thermal Conductivity Btu in / ft ² hr °F (W/m K)	Nominal Resistance ¹ ft ² hr °F / Btu (m ² K/W)
Interior Film	-	-	-	R-0.7 (0.12 RSI)
Gypsum	Gypsum	1/2 (13)	1.1 (0.16)	R-0.5 (0.08 RSI)
Stud Cavity ²	Air	6 (152)	-	R-0.9 (0.16 RSI)
6" x 1-5/8" Steel Stud	Galvanized Steel	18 ga.	430 (62)	-
Sheathing	Gypsum	1/2 (13)	1.1 (0.16)	R-0.5 (0.08 RSI)
Exterior Insulation	Mineral Wool	Varies	0.24 (0.034)	R-8.4 to R-33.6 (1.48 to 5.92 RSI)
Thermal Isolator	PVC	0.24 (6.0)	0.59 (0.085)	-
GP or FP Bracket	Galvanized Steel	0.01 (2.0)	430 (62)	-
Fasteners	Steel	0.26 (6.5) Ø	347 (50)	-
Vertical T-Rail	Aluminum	0.08 (2.0)	1110 (160)	-
Air Spaces ³	Air	Varies	Varies	-
Exterior Film	-	-	-	R-0.7 (0.12 RSI)
Overall Wall Assembly 1D	-	-	-	R-11.6 to R-36.8 (2.04 to 6.48 RSI)

¹ Dash indicates not a continuous component.

²The thermal conductivities of large air spaces were determined according to Table 6 of CSA Z5010 and Table 3 in Chapter 26 of 2017 ASHRAE Handbook – Fundamentals


³The thermal conductivities of small air spaces were determined according to ISO 10077-2

APPENDIX D: SIMULATED TEMPERATURE PROFILES

As an example of the thermal profiles of the StoVentec Bracket system, the following figures illustrate a typical temperature distribution for the exterior insulated steel-frame wall assemblies with studs at 16 inch (406 mm) o.c. and 16 inch (406 mm) horizontal bracket spacing, 24 inch (610 mm) vertical bracket spacing, and 6 inch (152 mm) exterior insulation (R-25.2).

Figure D1: Simulated Temperature Profile of Exterior Insulated Steel Frame Wall Assembly with 16 inch (406 mm) stud spacing, 16 inch (406 mm) horizontal bracket spacing, 24inch (610 mm) vertical bracket spacing, and 6 inch (152 mm) mineral wool exterior insulation (R-25.2)

APPENDIX E: GLOSSARY OF TERMS

Term	Symbol	Units Imperial	Units SI	Description
Conductivity	К	<u>(BTU in)</u> (hr ft² ⁰F)	<u>W</u> (m K)	The ability of a material to transmit heat in terms of energy per unit area per unit thickness for each degree of temperature difference.
Equivalent Conductivity	K _{eq}	<u>(BTU in)</u> (hr ft² ⁰F)	<u>W</u> (m K)	The averaged or equivalent thermal conductivity of a component consisting of several building materials, effectively treating the component as a homogeneous material that provides the same thermal characteristics.
Heat Flow	Q	BTU/hr	W	The amount of energy per unit time that passes through an assembly under a specific temperature drive of ΔT .
Thermal Transmission Coefficient	U	<u>(BTU)</u> (hr ft² ∘F)	<u>W</u> (m² K)	Heat flow per unit time through a unit area of an assembly per temperature degree difference. The convention is to include the impact of air films
Thermal Resistance of a Material	R	<u>(hr ft² ∘F)</u> (BTU)	<u>(m² K)</u> W	A measure of a material's resistance to heat flow.
Effective Thermal Resistance	R _{eff}	<u>(hr ft² ºF)</u> (BTU)	<u>(m² K)</u> W	A measure of an assembly's resistance to heat flow, including the effects of thermal bridging. The inverse of the assembly U-value.
Clear Field Assembly Thermal Transmittance	Uo	(<u>BTU)</u> (hr ft² ⁰F)	<u>W</u> (m² K)	Heat flow coefficient for an assembly with uniformly distributed thermal bridges, which are not practical to account for on an individual basis for U-value calculations. Examples of thermal bridging included in U ₀ are brick ties, girts supporting cladding, and structural studs.

Term	Description
Air Films	An approximation of the combined radiative and conductive-convective heat exchange at air boundary surfaces.
Clear Field Assembly	Wall, floor and roof assemblies of a building. (see definition of U_0 above).
Opaque Assembly	All areas in the building envelope, except fenestration and building services openings such as vents and grilles.
Poured-in- Place Concrete Wall	An architectural exposed concrete wall that is formed at the location of installation and is part of the building structural support.
Thermal Break	A non-conductive material that interrupts a conductive heat flow path. For example, aluminum framing for glazing in cold climates typically utilizes a low conductivity material to join an exterior and interior portion of the metal framing.
Thermal Bridge	Part of the building envelope where otherwise uniform thermal resistance is changed by full or partial penetration of the thermal insulation by materials with lower thermal conductivities and/or when the interior and exterior areas of the envelope are different, such as what occurs at parapets and corners.
Thermal Modelling	The process by which the thermal performance of assemblies is determined through computer simulations utilizing heat transfer models. Assemblies can be modeled two- or three- dimensions (2D and 3D).
Thermal Performance	A broad term to describe performance indicators related to the heat transfer through an assembly. The performance indicators include thermal transmittances, effective R-values, and metrics to evaluate condensation resistance related to surface temperatures.